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REPEATED MEASUREMENTS DESIGNS, 11
By

A. Hedayat and K. Afsarine jad

1. Introduction and the Need for Repeated Measurements.

Experimenters in many fields of research perform experiments
designed in such a way that each experimental unit (subject)
is assigned more than once to a treatment (test), either
different or identical. These designs are given several
names in the literature of statistical designs: repeated

measurements designs (briefly RM designs), crossover, or

changeover designs, (multiple) time series designs, and

before-after designs. An extreme form of an RM design

is the one in which the entire experiment is planned on a
single experimental unit. Details on latter designs can
be found in Williams (1952), Finney and Outhwaite (1956),
and Kiefer (1900). A brief history of the subject with a
bibliography containing 136 directly related references is
given in Hedayat and Afsarinejad (1975).

The use of RM designs rather than the classical de-
signs, for which the number of experimental units is the
same as the number of observations, can be justified in
many settings such as when:

(1) One of the objectives of the experiment is to determine
the effect of different sequences of treatments applications

as in drug, nutrition, or learning experiments.




— e e e —— ——

(1i) The experimenters might be interested in discovering
% whether or not a trend can be traced among the responses
8 obtained by successive applications of several treatments
on a single experimental unit. For example, if one wants
to measure the degree of adaptation to darkness over time,
the most efficlient use of subJects requires that each sub- ’
Ject be tested at all times of interest.
E (111) Experimental units are scarce and have to be used re-
| peatedly. This 1s often the case in small clinics or in
the development of large military systems, such as aerospace 1
vehicles, airplan;s, radar, computers, etc.

(iv) The nature of the experiment is such that it calls for

special training over a long period of time. Therefore, to

-

F F minimize cost and time, the experimenter should take advant-
‘ age of the trained experimental units for repeated measure-
ments.
f To this point, RM designs have been used on the grounds
of balance and simplicity of computations. While such cri-
teria may still be attractive in some cases, they cannot be
: N justified on statistical grounds. This paper shows that some
families of RM designs which are very popular among experi-

1

menters are "universally optimal" in a relatively large class

of competing designs (Section 3.1). Existence and nonexistence

: of such designs are discussed in Section 3.2.




2. Preliminaries and Universal Optimality.

The search for an optimum design involves the determination,
in a specified class of competing designs, of the designs
which is best according to some well-defined criterai under
a given model for observations. In this paper we are con-
cerned exclusively with the following set-up: t treatments
are to be tested and studied via n experimental units.
Each experimental unit is used in p periods resulting in
ry 2 1 observations for the i-th treatment, r, + r, +...+r, = np.
Clearly there are tl(%p)t(np't) ways of performing the ex-
periment. Let D denote the set of all such arrangements,
to which we shall refer as designs. If d 1is a design in

f D, then let d(i,j) denote the treatment assigned by d in
ﬂ the i-th period to the j-th experimental unit. Throughout
this paper the following model is assumed for the response

obtained under d(i,Jj):

| (e.1) YiJ=U+<1

TRy T

1 &l1,0) " Paded, 0 T Ruy

e 1,8 00508 3 = 1,8,..:300

o Pa(0,3) = 0 for all j,

where the unknown constants u, ay 53, Td( and

1,4) Pa(1-1,])
are respectively called the overall mean, the effect of the

\ S

4 i-th period, the effect of the jJ-th experimental unit, the
direct effect of treatment d(i,j) and the first order

residual effect (or carryover effect) of treatment d(i-1,J).
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We assume that eij's are homoscedastic which means zero.

We are interested in specifying a design 4 in D which
is connected with respect to all contrasts in immediate and
residual effects and is '"universally optimal" in a speficied

class of competing designs.

2.1. Universal Optimality. In vector notation the np

responses under Model (2.1) can be written as

Y 8

a = %14®%1 * X24%
where 91 consists of paramters of interest for study. In
our case, 61 consists of direct treatment effects or residual
effects or both. Let

'
Mo

’ % ’
- X14%2q (Xoq¥2q)  ¥24%14

’
Ga' 0yl = ity
and
8 ’ ’ ! 7 ’
%(®1) = Xyq¥q - X¥19%2a ¥2a¥2a)  ¥2¥q ;
then Cd(el) is the information matrix associated with 61

since it is well known that a linear parametric function

E = 4'91 is estimable under 4 if s is in the row space
of Cd’ and the best linear unbiased estimator of €& 1is
given by

? - 2°(Cy)" @y with var(R) = & (cy)” & o°.
In this case we say d is connected for &. Now suppose d
is connected for a set of t-1 independent orthonormal
contrasts A'Gl. Then by the above argument the covariance
of the best linear unbiased estimator of A'Bl is given by

2 2

= A'cAc® = (A'CLA)"
Vg0 = qho” = ( Cq ) -
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This leads to consideration of an optimality functional Y
on (t-1) x (t-1) matrices and to determination of a design
d which minimizes Y(Vd). Some commonly used optimality

criteria are:

D-optimality: Y(Vd) = Det Vg3
A-optimality: Y(Vd) = Tr Vs;
E-optimality: Y(Vd) = maximum eigenvalue of V..

The relationship between these optimality criteria is well-
known and may be found in Kiefer (1958, 1959, 1975). 1In
some settings it is possible to introduce an optimality
criterion which include D-, A- and E-optimality as special
cases. One such setting together with a sufficient condi-
tion under which a design is optimal is given by Kiefer
(1975) and will be utilized throughout this paper.

A major difficulty is the computation of (A’CdA)"l for
each competing design d. Since in our case, as will be
seen later, each row (hence each column) of Cd adds up to

zero, we can utilize the recent result of Kiefer (1975) on

I -
universal optimality and avoid the computation of (A CdA) 1

for each d. We shall now briefly review the concept of

universal optimality. Suppose that R consists of t x t

t
non-negative definite matrices. Let ﬁt consist of those
elements of Rt’ all of whose row and column sums are zero.
Let Q be the set of all functions @ from Rt to

(=, +»] with properties:
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(1) w(-) is convex,
(2.2} (11) w(bR) 1is non-increasing in the scalar
b>0, ReR,.
{1i1) w(.) is invariant under permutation of

rows or columns of R € ﬁt‘
In our setting Cy ¢ Rt’

A very useful concept of optimality in this setting
is:

*
Definition 2.1. A design d is universally optimal in the

class of competing designs under consideration if
m(Cd*) < w(Cd) for each w e Q,

I d* is universally optimal, then it is D-, A-, and
E-optimal. In some situations it is %ossible to identify
the ﬁniversal optimal design without actually computing
m(Cd) for each d. One such situation has been identified
by Kiefer (1975), and is formally stated here. First we
need the following definition.

Definition 2.2. A design d is said to be completely

symmetric with respect to 91 if its corresponding Cd

is of the form aIt + th, where a and b are scalars,
It is the identity matrix of order t and Jt is the

matrix of order t whose entries are all one's.

Theorem 2.1. If the class of competing designs contains a

design d* such that

- R PO T .
S . vy e S 4,1 Kb o
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*
(1) d is completely symmetric,

q» for alld e Rt’

*
then d is universally optimal.

28]« Tro.k > Ted

In the following sections we have characterized univer-
sally optimal designs in some classes of competing designs
which we know are connected for the parameters under considera-

Qion.

3. Universal Optimal Repeated Measurements Designs.

In this section we shall search for a universally optimal
design (if it exists) in a class of uniform RM designs.
The existence and nonexi§tence of such optimal designs are
studied in the final part of this section. First we need
some notation and definitions. An arbitrary RM design
based on np observations resulting from the application
of t treatments to n experimental units during p periods
is denoted by RM(t,n,p). The set of all such arbitrary RM
designs is designated by ®m(t,n,p). Our study here is limited

to the case where p =t and n = At, \ a positive integer.

Definition 3.1. A design d in RmM(t,n,p) is said to be

’ ’
uniform on the experimental units if d(i,J) + d(i ,j), 1+ + 1

for all j.

Definition 3.2. A design d in ®M(t,n,p) is said to be

uniform on the periods if in each period d assigns the

same number of experimental units to each treatment.
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Definition 3.3. A design d in ®M(t,n,p) is said to be
uniform if its is uniform on both the experimental units

and periods.

The subset of all uniform designs in ®Mm(t,n = \t,t) is

denoted by WM (t,\t,t).

3.1. Search for a Universal Optimal Design in u’fh(t,\t,t).

Our interest here mainly lies in unbiased estimation of 1
linear parametric functions of direct treatment effects and ]
residual effects under Model 2.1. So, under the notation of !
Section 2.1, the parametric vector 61 consists of either
all direct effects or all first order residual effects. The
information matrix associated with the entire set of para-
meters of Model 2.1, rewritten as

¥

= T /. + + .+ o+
4 T TaE 00 T B g e P o ey
for an arbitrary d in \@m(t, n = Xlt,t) is given by

e ' "]
nl Md | XJl .12 nlt
|
’ _ 1 1 e
Md A(t-1)I : Eq Ng (it 1)1,C
' -2 ' ' | R S -2
(.1)  (Xxdo = [ AJ] o ' nI J, nl, o
’ ' | v
J2 Nd ' J2 tl tl
i ’ ' ! ’
nlg )»(t—l)lt | nli t1} nt
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Lemma 3.1. The information matrix of the joint direct treat-

where
11 is the identity matrix of order ¢,
Md is the incidence matrix of direct effects and first

order residual effects under d,

Jl is a square matrix of order t with all entries ones,
Jo 1s a t x n matrix with all entries ones,
lr is an r x 1 vector of ones,
Ed is the incidence matrix of first order residual effects
and period effects under 4,
Nd is the incidence matrix of first order resdiual effects ‘

and experimental unit effects under d. j

ment effects and first order resdiual effects is given by

A1) i
nl - XJl Md T J1
=2 -2
(3.2) cyl7,p)o = o
2
_a(t-1) to-t-1 gt 7
| My T AR e o VRS AL R
5 =
Proof. If we write X Xd as partioned in (3.1l) in the
following way s 4
’ l
21¢%14 21d4%24
‘X
Xd LT ’
¢ ’ Z
Z224%14 224%24

AR IR TR A ——————— T — , . R— ks
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then
(3.3) C4(T,p) = &1d b1 ZidZZd (sz 2a) 2d 1d°
where
1 I nl, e e s b, o i
(?édZZd)- =2 s e e =L F o
' T . 0 0 0 :

After some algebra (3.3) reduces to (3.2).

*
Theorem 3.1. A design d in WRM(t,\t,t) is universally

optimal for the estimation of direct treatment effects if

Md* = x(Jl-I).

Proof. Utilizing the joint information matrix of the vector
of direct treatment effects and residual effects as given in
(3.2), one can derive the information matrix of the vector of

direct effects as

(3.4} C (7] = nl = ———73-——— M Md KLZ_ﬁ) o
3 (6%=t=1) t8-t-1
It can be argued that for any d in wm(t,\t,t)

Mgdy = JlM = A(t- 1)J

and therefore

Cd('r)lt =0

meaning that the sum of the entries in each row and column of

Cd(T) is zero. Therefore, by Theorem 2.1, a design a4 in
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WM(t,\t,t) is universally optimal if C, (1) is completely

symmetric and Ter*(T) > TrC (T) for any other d in the

class., Clearly Ld*(T) is completely symmetric if a* is
A (

such that Md* =

is obvious that Ter(T) is maximum if and only if TrM

Iy -I). From the expression for Cd(T) it

[
ala
is minimum. But since the sum of each row of My is A(t-1),
TerMd is minimum if and only if M, = k(Jl-I).

*
Theorem 3.2. A design d in Wu®h(t,\t,t) is universally

optimal for the estimation of first order residual effects
* = -
if Mo* = x(J1 115 1
Since the information matrix of ther first order resi-

dual effects, Cd(p), from (3.2), is

2
, L oarb =t=l 1 ‘ s 2=t

the proof is analogous to the proof of Theorem 3.1.

The problem of the existence and nonexistence of a uni-

versally optimal design in WRm(t,\t,t) will now be studied.

3.2. Existence and Nonexistence of a Universal Optimal De- ‘
sign in u’m(t,\t,t).

First we shall give a combinatorial interpretation of
the structure of a design in uwRh(t,\t,t) whose incidence
matrix of direct treatment effects and first order resdiual
effects, Md’ is of the form X(Jl-I). Then we shall investi-

gate the existence and nonexistence of such designs. First |

we need the following definition.




8.

Definition 4,1, A design d 1in uem(t,\t,t) is said to be
balanced with respect to the set of direct treatment effects
and first order residual effects if in the order of applica-
tion each treatment is preceded X times by each other treat-
ment, i.e., the collection of ordered pairs (d(i,J,), d4(i-1,J)),
11 t=1; 1< J< N\t contains each ordered pair of distinct
Qreatments precisely A times.

- If 4 satisfies the above requirement we shall simply

say that d 1is balanced.

Example 4.1. Let t =3 and )\ = 4. Then the following

design is balanced.

Experimental Units

e i TR R Y N R T 1

1 1 2 3 2 3 1 ik 2 3 2 ) 1

Periods 2 3 S . U SR 3 1R e AEER I
2 2 3 X 1 2 3 2 3 1 1 2 3

Lemma 4.1. Mq 1s of the form X(Jl-I) if and only if d 1is

balanced, i.e., d 1is universally optimal if it is balanced.

The proof follows directly from the definition of first
order residuals effect in Model 2.1 and the fact that under
the stated condition the diagonal entries of Md are zeros

and off diagonal entries are \.
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If d; ‘is a balanced RM(t,xiy,t) design, 1 = 1,2, then
by patching dl and d2 side by side we shall obtain a
balanced RM(t,\t,t) design with \ = Xl + %,. Therefore
to construct a balanced RM(t,\t,t) design it is sufficient
to study the existence of a balanced RM(t,t,t) design.

But it should be clear that if a balanced RM(t,t,t) design
does not exist then we cannot conclude the nonexistence of
balanced RM(t,\t,t) designs with X\ > 1, as we shall see
shortly.

Several authors have studied the existence and nonexist-
ence of balanced RM(t,t,t) designs either directly in the
context of experimental design or 1n algebraic systems equi-
valent to such designs. For an extensive bibliography on
the subject the reader is referred to Hedayat and Afsarinejad
(1975). Here we shall up-date the information on balanced de-

signs given in Hedayat and Afsarinejad (1975).

Family One. t =2m, X\ =1
It is known that balanced RM(t,t,t) designs exist

for all values of m. For example, if we number the experi-
mental units and periods by O0,1l,...2m-1, then d 1is balanced
if d assigns treatment d(i,J) 4in the i-th period to the

J-th experimental unit in the following way:

(3) + 3 mod 2m if 1 is even

= (em- 21) 4+ § mod 2m if 1 1s odd.

a(1,4)




following design for t = 9 was found via an electronic

14

Family Two. t =2m+ 1, %\ = 1.
It is known that no balanced RM(t,t,t) design

exists if t = 3,5, or 7. According to E. Sonnemann1 the

[ b S

Tea

-t b

Sl o e - ¥ e S

computer by K. B. Mertz.
y Experimental Units
ot A 4. 5. 67 8B 9
Bl 28 a8 6. ¢ & %
i ] O R My - e TIMEE TR S -
‘ slri8 B0 3 1 % 5 6
3 LN R e R TR T U I R
ﬂ Periods 5|4 5 6 9 T 8 2 3 1
ﬁ cr8 97 X 2 % b 5 5
i 0 S R S S S SR SR
, o SR S e - - RS R T ‘
( gepgs T a0y -8 4% 8 9 %

E. Sonnewann has found the following dosign for t = 15

by mimicking the pattern of the design discovered by Mertz.

l. Personal communication to A. H.




) Experimental Units

PN S R R it W G b A - & I T R L
AR R R SR S SR BN e ST R TR T R I
3 12 6 4 5. 8 o oa3ogp as. A 7 8 9 10

e . 7 14 g . 106 18 11 42 13 2 3 4
“‘ 35 1 AR S P S SR S S 5 8 9 10 6
11 3 9 10 y e - b 7 1 4 5 1 2

9 2 12 10" 6 7 S8 S3inad S 1 I3 14 15 11
11 5 SIS ARG 2 S 4 9t =10

\O O3 OO = U N =
[o2]

Periods M. 8 5 I3 Iols B 9" fer 6 7 L -2 3 4

: B B0 R e S G R g S BT s B 12
i 10 2 AN [ S S 8 SRR S R B | ST RO S

| 11 15 4 7.8 9 10415 M 12 5 1. 2 3

2 -3 15 6 7 B 9 4 5 2 b oE 18 i

D4 4 9 A5 a2z 03 500120 3 W 8 T 8

80 N R R DR R e S e SRR R e |

W3 1 W SR S e A0 6 s 1L 12 13

'; An example of balanced RM(21,21,21) is given in Hedayat
ES and Afsarinejad (1975). An example of balanced RM(27,27,27)
is given below. The group theoretic equivalent structure of

the following design was first discovered by Keedwell (1974).

e, &

In an abstract, Wang (1973), has claimed the existence

of a certain pattern in nonabelian groups of orders 39, 55

and 57 which when translated to our set up implies the exist-

T
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tence of balanced RM(t,t,t) designs with t = 39, 55 and 57,
But we have not seen this announced results. No other pub-
lished or announced results are known to us.

The story of balanced RM(t,t,t) design with t odd
is somewhat discouraging but, as we shall see shortly, such

designs exist for all t if \ = 2,

Family Three. t=2m+ 1, X = 2,

In this case n = At = 2(2m+l) experimental units.
Partition the experimental units into two groups each of size
2m + 1, DNumber the periods and experimental units in each
group by 0,l1,...,2m. Then d is balanced if d assigns
treatment d(i,j) in the i-th period to the j-th experi-

mental unit in the following way:

In the first group:

a(1,4) = () + 4 mod 2m+l if i is even,

(2m+l - i—”z'-l-) + j mod 2mkl if i is odd.

Il

In the second group:

d(i,3d) = (m = 3) + J mod 2m+l if i is even,

= (;—— - m=1l) + J mod 2m¢l if i is odd.
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